Search results
Results from the WOW.Com Content Network
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. [1] The pressure difference is caused by the surface tension of the interface between liquid and gas, or between two immiscible liquids.
The surface of a fluid is curved because exposed molecules on the surface have fewer neighboring interactions, resulting in a net force that contracts the surface. There exists a pressure difference either side of this curvature, and when this balances out the pressure due to gravity, one can rearrange to find the capillary length. [2]
Surface pressure is denoted by π: = and shares many similar properties with three-dimensional pressure. Properties of surface chemicals can be investigated by measuring pressure/area isotherms, as the two-dimensional analog of Boyle's law, πA = k, at constant temperature. Surface tension is another example of surface pressure, but with a ...
(σ: surface tension, ΔP max: maximum pressure drop, R cap: radius of capillary) Later, after the maximum pressure, the pressure of the bubble decreases and the radius of the bubble increases until the bubble is detached from the end of a capillary and a new cycle begins. This is not relevant to determine the surface tension. [3]
Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension). The concept of water potential has proved useful in understanding and computing water movement within plants, animals, and soil.
Likewise at the peak the radius of the stream is greater and, by the same reasoning, pressure due to surface tension is reduced. If this were the only effect, we would expect that the higher pressure in the trough would squeeze liquid into the lower-pressure region in the peak. In this way we see how the wave grows in amplitude over time.