Search results
Results from the WOW.Com Content Network
acetyl chloride SOCl 2 acetic acid (i) Li[AlH 4], ether (ii) H 3 O + ethanol Two typical organic reactions of acetic acid Acetic acid undergoes the typical chemical reactions of a carboxylic acid. Upon treatment with a standard base, it converts to metal acetate and water. With strong bases (e.g., organolithium reagents), it can be doubly deprotonated to give LiCH 2 COOLi. Reduction of acetic ...
Variation of the % formation of a monoprotic acid, ... This is because acetic acid is a much weaker base than water. ... This rule can help assign molecular structure ...
Chloroacetic acid was first prepared (in impure form) by the French chemist Félix LeBlanc (1813–1886) in 1843 by chlorinating acetic acid in the presence of sunlight, [3] and in 1857 (in pure form) by the German chemist Reinhold Hoffmann (1831–1919) by refluxing glacial acetic acid in the presence of chlorine and sunlight, [4] and then by the French chemist Charles Adolphe Wurtz by ...
Glycolic acid is slightly stronger than acetic acid due to the electron-withdrawing power of the terminal hydroxyl group. The carboxylate group can coordinate to metal ions, forming coordination complexes. Of particular note are the complexes with Pb 2+ and Cu 2+ which are significantly stronger than complexes with other carboxylic acids. This ...
In the case of citric acid, the overlap is extensive and solutions of citric acid are buffered over the whole range of pH 2.5 to 7.5. Calculation of the pH with a polyprotic acid requires a speciation calculation to be performed. In the case of citric acid, this entails the solution of the two equations of mass balance:
Hydrochloric acid#Chemistry mentions, for example, a few facts about monoprotic acids; perhaps the corresponding section for acetic acid could mention a few salient points about carboxyl groups. In short, basically every section would probably need to be a bit longer for this to be an FA.
Acetic acid, CH 3 COOH, is an acid because it donates a proton to water (H 2 O) and becomes its conjugate base, the acetate ion (CH 3 COO −). H 2 O is a base because it accepts a proton from CH 3 COOH and becomes its conjugate acid, the hydronium ion, (H 3 O +). [9]
Other examples of inorganic polyprotic acids include anions of sulfuric acid, phosphoric acid and hydrogen sulfide that have lost one or more protons. In organic chemistry and biochemistry, important examples include amino acids and derivatives of citric acid. Although an amphiprotic species must be amphoteric, the converse is not true.