Search results
Results from the WOW.Com Content Network
Hyperbole (/ h aɪ ˈ p ɜːr b əl i / ⓘ; adj. hyperbolic / ˌ h aɪ p ər ˈ b ɒ l ɪ k / ⓘ) is the use of exaggeration as a rhetorical device or figure of speech. In rhetoric , it is also sometimes known as auxesis (literally 'growth').
Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry proposed for use in both relativity and ...
Hyperbolic may refer to: of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics Hyperbolic geometry, a non-Euclidean geometry; Hyperbolic functions, analogues of ordinary trigonometric functions, defined using the hyperbola; of or pertaining to hyperbole, the use of exaggeration as a rhetorical device or figure ...
That book is heavier than the dictionary. I could sleep forever. I have too much on my plate. Check out that mountain of books on my bedside table. The line at the grocery store was like Disney World.
A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.
Hyperbolic coordinates plotted on the Euclidean plane: all points on the same blue ray share the same coordinate value u, and all points on the same red hyperbola share the same coordinate value v. In mathematics, hyperbolic coordinates are a method of locating points in quadrant I of the Cartesian plane
We'll cover exactly how to play Strands, hints for today's spangram and all of the answers for Strands #287 on Sunday, December 15. Related: 16 Games Like Wordle To Give You Your Word Game Fix ...
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle.Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola.