enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Young–Laplace equation - Wikipedia

    en.wikipedia.org/wiki/Young–Laplace_equation

    In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.

  3. Capillary pressure - Wikipedia

    en.wikipedia.org/wiki/Capillary_pressure

    The Young–Laplace equation is the force up description of capillary pressure, and the most commonly used variation of the capillary pressure equation: [2] [1] = ⁡ where: is the interfacial tension is the effective radius of the interface

  4. Laplace pressure - Wikipedia

    en.wikipedia.org/wiki/Laplace_pressure

    The Laplace pressure is determined from the Young–Laplace equation given as [2] = (+), where and are the principal radii of curvature and (also denoted as ) is the surface tension. Although signs for these values vary, sign convention usually dictates positive curvature when convex and negative when concave.

  5. Capillary length - Wikipedia

    en.wikipedia.org/wiki/Capillary_length

    The capillary length or capillary constant is a length scaling factor that relates gravity and surface tension. It is a fundamental physical property that governs the behavior of menisci, and is found when body forces (gravity) and surface forces (Laplace pressure) are in equilibrium.

  6. Jurin's law - Wikipedia

    en.wikipedia.org/wiki/Jurin's_Law

    Jurin's law, or capillary rise, is the simplest analysis of capillary action—the induced motion of liquids in small channels [1] —and states that the maximum height of a liquid in a capillary tube is inversely proportional to the tube's diameter.

  7. Contact angle - Wikipedia

    en.wikipedia.org/wiki/Contact_angle

    In the above equation, the first two terms are the modified Young's equation, while the third term is due to the Laplace pressure. This nonlinear equation correctly predicts the sign and magnitude of κ, the flattening of the contact angle at very small scales, and contact angle hysteresis.

  8. Capillary condensation - Wikipedia

    en.wikipedia.org/wiki/Capillary_condensation

    Meniscus formation is dependent on the surface tension of the liquid and the shape of the capillary, as shown by the Young-Laplace equation. As with any liquid-vapor interface involving a meniscus, the Kelvin equation provides a relation for the difference between the equilibrium vapor pressure and the saturation vapor pressure.

  9. Capillary bridges - Wikipedia

    en.wikipedia.org/wiki/Capillary_bridges

    Pierre Simon Laplace contributed the notion of capillary tension. Laplace even formulated the widely known nowadays condition for mechanical equilibrium between two fluids, divided by a capillary surface P γ =Δ P i.e. capillary pressure between two phases is balanced by their adjacent pressure difference.