enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Diffraction from a large three-dimensional periodic structure such as many thousands of atoms in a crystal is called Bragg diffraction. It is similar to what occurs when waves are scattered from a diffraction grating. Bragg diffraction is a consequence of interference between waves reflecting from many different crystal planes.

  3. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Diagram of a two slit diffraction problem, showing the angle to the first minimum, where a path length difference of a half wavelength causes destructive interference. Multiple-slit arrangements can be mathematically considered as multiple simple wave sources, if the slits are narrow enough.

  4. Pole figure - Wikipedia

    en.wikipedia.org/wiki/Pole_figure

    Pole figure and diffraction figure. Consider the diffraction pattern obtained with a single crystal, on a plane that is perpendicular to the beam, e.g. X-ray diffraction with the Laue method, or electron diffraction in a transmission electron microscope. The diffraction figure shows spots. The position of the spots is determined by the Bragg's ...

  5. Fresnel diffraction - Wikipedia

    en.wikipedia.org/wiki/Fresnel_diffraction

    Some of the earliest work on what would become known as Fresnel diffraction was carried out by Francesco Maria Grimaldi in Italy in the 17th century. In his monograph entitled "Light", [3] Richard C. MacLaurin explains Fresnel diffraction by asking what happens when light propagates, and how that process is affected when a barrier with a slit or hole in it is interposed in the beam produced by ...

  6. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. The resulting map of the directions of the X-rays far from the sample is called a diffraction pattern.

  7. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = ⁡, where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).

  8. Diffraction grating - Wikipedia

    en.wikipedia.org/wiki/Diffraction_grating

    A blazed diffraction grating reflecting only the green portion of the spectrum from a room's fluorescent lighting. For a diffraction grating, the relationship between the grating spacing (i.e., the distance between adjacent grating grooves or slits), the angle of the wave (light) incidence to the grating, and the diffracted wave from the grating is known as the grating equation.

  9. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens.