Search results
Results from the WOW.Com Content Network
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
In a third layer, the logarithms of rational numbers r = a / b are computed with ln(r) = ln(a) − ln(b), and logarithms of roots via ln n √ c = 1 / n ln(c).. The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers 2 i close to powers b j of other numbers b is comparatively easy, and series representations of ln(b) are ...
In practical implementations such as y-cruncher, there is a relatively large constant overhead per term plus a time proportional to / , and a point of diminishing returns appears beyond three or four arctangent terms in the sum; this is why the supercomputer calculation above used only a four-term version.
Moreover, as the derivative of f(x) evaluates to ln(b) b x by the properties of the exponential function, the chain rule implies that the derivative of log b x is given by [35] [37] = . That is, the slope of the tangent touching the graph of the base- b logarithm at the point ( x , log b ( x )) equals 1/( x ln( b )) .
Since the ratio inside the idf's log function is always greater than or equal to 1, the value of idf (and tf–idf) is greater than or equal to 0. As a term appears in more documents, the ratio inside the logarithm approaches 1, bringing the idf and tf–idf closer to 0.
0 (zero) is a number representing an empty quantity.Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures.
The time bound for this algorithm is dominated by the time to solve a sequence of 2-satisfiability instances that are closely related to each other, and Ramnath (2004) shows how to solve these related instances more quickly than if they were solved independently from each other, leading to a total time bound of O(n 3) for the sum-of-diameters ...
The areas [of the squares] produced separately by the lengths of the breadth of a rectangle together equal the area [of the square] produced by the diagonal. 1.13. This is observed in rectangles having sides 3 and 4, 12 and 5, 15 and 8, 7 and 24, 12 and 35, 15 and 36.