Search results
Results from the WOW.Com Content Network
Myelin (/ ˈ m aɪ. ə l ɪ n / MY-ə-lin) is a lipid-rich material that surrounds nerve cell axons to insulate them and increase the rate at which electrical impulses (called action potentials) pass along the axon. [1] [2] The myelinated axon can be likened to an electrical wire (the axon) with insulating material (myelin) around it. However ...
The action potential travels from one location in the cell to another, but ion flow across the membrane occurs only at the nodes of Ranvier. As a result, the action potential signal jumps along the axon, from node to node, rather than propagating smoothly, as they do in axons that lack a myelin sheath.
The myelin sheaths of oligodendrocytes do not have neurilemma because excess cytoplasm is directed centrally toward the oligodendrocyte cell body. Neurilemma serves a protective function for peripheral nerve fibers. Damaged nerve fibers may regenerate if the cell body is not damaged and the neurilemma remains intact. The neurilemma forms a ...
Oligodendrocytes (from Greek 'cells with a few branches'), also known as oligodendroglia, are a type of neuroglia whose main function is to provide the myelin sheath to neuronal axons in the central nervous system (CNS). Myelination gives metabolic support to, and insulates the axons of most vertebrates. [1]
The myelin sheath that surrounds and protects nerve cells is made by cells called oligodendrocytes. In a person with MS, these cells are lost, so damaged myelin sheaths cannot be repaired.
Brain cells make up the functional tissue of the brain. The rest of the brain tissue is the structural stroma that includes connective tissue such as the meninges, blood vessels, and ducts. The two main types of cells in the brain are neurons, also known as nerve cells, and glial cells, also known as neuroglia. [1]
Type I cells can be further classified by the location of the soma. The basic morphology of type I neurons, represented by spinal motor neurons, consists of a cell body called the soma and a long thin axon covered by a myelin sheath. The dendritic tree wraps around the cell body and receives signals from other neurons.
This only affects the myelin sheath on myelinated axon while the axon and nerve continuity will remain preserved. [2] Loss of myelin is often readily seen in histological samples as the layer of myelin around myelinated nerves will appear very thin, representing either the late stages of demyelination or early stages of remyelination. [14]