Search results
Results from the WOW.Com Content Network
Transcription is the process of copying a segment of DNA into RNA for the purpose of gene expression. Some segments of DNA are transcribed into RNA molecules that can encode proteins, called messenger RNA (mRNA). Other segments of DNA are transcribed into RNA molecules called non-coding RNAs (ncRNAs).
In contrast, DNA Pol I is the enzyme responsible for replacing RNA primers with DNA. DNA Pol I has a 5′ to 3′ exonuclease activity in addition to its polymerase activity, and uses its exonuclease activity to degrade the RNA primers ahead of it as it extends the DNA strand behind it, in a process called nick translation. Pol I is much less ...
While the sugar-phosphate "backbone" of DNA contains deoxyribose, RNA contains ribose instead. [6] Ribose has a hydroxyl group attached to the pentose ring in the 2' position, whereas deoxyribose does not. The hydroxyl groups in the ribose backbone make RNA more chemically labile than DNA by lowering the activation energy of hydrolysis.
This RNA is complementary to the template 3′ → 5′ DNA strand, [1] with the exception that thymines (T) are replaced with uracils (U) in the RNA and possible errors. In bacteria, transcription is carried out by a single type of RNA polymerase, which needs to bind a DNA sequence called a Pribnow box with the help of the sigma factor protein ...
A DNA sequence is called a "sense" sequence if it is the same as that of a messenger RNA copy that is translated into protein. [37] The sequence on the opposite strand is called the "antisense" sequence.
[1] [2] [3] During gene expression (the synthesis of RNA or protein from a gene), DNA is first copied into RNA. RNA can be directly functional or be the intermediate template for the synthesis of a protein. The transmission of genes to an organism's offspring, is the basis of the inheritance of phenotypic traits from one generation to the next.
The code is read by copying stretches of DNA into the related nucleic acid RNA in a process called transcription. Within cells, DNA is organized into long sequences called chromosomes. During cell division these chromosomes are duplicated in the process of DNA replication, providing each cell its own complete set of chromosomes.
Retrotransposons [39] are composed of DNA, but are transcribed into RNA for transposition, then the RNA transcript is copied back to DNA formation with the help of a specific enzyme called reverse transcriptase. A retrotransposon that carries reverse transcriptase in its sequence can trigger its own transposition but retrotransposons that lack ...