enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    To avoid installing the large SciPy package just to get an array object, this new package was separated and called NumPy. Support for Python 3 was added in 2011 with NumPy version 1.5.0. [15] In 2011, PyPy started development on an implementation of the NumPy API for PyPy. [16] As of 2023, it is not yet fully compatible with NumPy. [17]

  3. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.

  4. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).

  5. Comparison of programming languages (array) - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_programming...

    In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.

  6. Array (data type) - Wikipedia

    en.wikipedia.org/wiki/Array_(data_type)

    In other array types, a slice can be replaced by an array of different size, with subsequent elements being renumbered accordingly – as in Python's list assignment "A[5:5] = [10,20,30]", that inserts three new elements (10, 20, and 30) before element "A[5]".

  7. List of numerical libraries - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_libraries

    NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.

  8. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    Support for multi-dimensional arrays may also be provided by external libraries, which may even support arbitrary orderings, where each dimension has a stride value, and row-major or column-major are just two possible resulting interpretations. Row-major order is the default in NumPy [19] (for Python).

  9. SciPy - Wikipedia

    en.wikipedia.org/wiki/SciPy

    SciPy (pronounced / ˈ s aɪ p aɪ / "sigh pie" [2]) is a free and open-source Python library used for scientific computing and technical computing. [3]SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.