Search results
Results from the WOW.Com Content Network
Conversely, a strict partial order < on may be converted to a non-strict partial order by adjoining all relationships of that form; that is, := < is a non-strict partial order. Thus, if ≤ {\displaystyle \leq } is a non-strict partial order, then the corresponding strict partial order < is the irreflexive kernel given by a < b if a ≤ b and a ...
A strict total order on a set is a strict partial order on in which any two distinct elements are comparable. That is, a strict total order is a binary relation < {\displaystyle <} on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :
A strict weak order that is trichotomous is called a strict total order. [14] The total preorder which is the inverse of its complement is in this case a total order . For a strict weak order < {\displaystyle \,<\,} another associated reflexive relation is its reflexive closure , a (non-strict) partial order ≤ . {\displaystyle \,\leq .}
The disjoint union of two posets is another typical example of order construction, where the order is just the (disjoint) union of the original orders. Every partial order ≤ gives rise to a so-called strict order <, by defining a < b if a ≤ b and not b ≤ a. This transformation can be inverted by setting a ≤ b if a < b or a = b. The two ...
If a relation is reflexive, irreflexive, symmetric, antisymmetric, asymmetric, transitive, total, trichotomous, a partial order, total order, strict weak order, total preorder (weak order), or an equivalence relation, then so too are its restrictions. However, the transitive closure of a restriction is a subset of the restriction of the ...
A strict partial order, also called strict order, [citation needed] is a relation that is irreflexive, antisymmetric, and transitive. A total order, also called linear order, simple order, or chain, is a relation that is reflexive, antisymmetric, transitive and connected. [15]
For this reason, the term strict preorder is sometimes used for a strict partial order. That is, this is a binary relation < {\displaystyle \,<\,} on P {\displaystyle P} that satisfies: Irreflexivity or anti-reflexivity: not a < a {\displaystyle a<a} for all a ∈ P ; {\displaystyle a\in P;} that is, a < a {\displaystyle \,a<a} is false for all ...
If ≤ is a non-strict well ordering, then < is a strict well ordering. A relation is a strict well ordering if and only if it is a well-founded strict total order. The distinction between strict and non-strict well orders is often ignored since they are easily interconvertible.