Ad
related to: strict total order coupon
Search results
Results from the WOW.Com Content Network
A strict total order on a set is a strict partial order on in which any two distinct elements are comparable. That is, a strict total order is a binary relation < {\displaystyle <} on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :
A law of trichotomy on some set X of numbers usually expresses that some tacitly given ordering relation on X is a trichotomous one. An example is the law "For arbitrary real numbers x and y, exactly one of x < y, y < x, or x = y applies"; some authors even fix y to be zero, [1] relying on the real number's additive linearly ordered group structure.
A strict weak order that is trichotomous is called a strict total order. [14] The total preorder which is the inverse of its complement is in this case a total order . For a strict weak order < {\displaystyle \,<\,} another associated reflexive relation is its reflexive closure , a (non-strict) partial order ≤ . {\displaystyle \,\leq .}
If a relation is reflexive, irreflexive, symmetric, antisymmetric, asymmetric, transitive, total, trichotomous, a partial order, total order, strict weak order, total preorder (weak order), or an equivalence relation, then so too are its restrictions. However, the transitive closure of a restriction is a subset of the restriction of the ...
A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also Axiom of choice § Equivalents).
More generally, an order functional is a function O mapping an ordering to another one, and satisfying the following properties: [11] If (>) is transitive , then so is O (>). If (>) is irreflexive , then so is O (>).
This constructed relation is a strict total order. The standard < on N can be taken as a strict total order R with only one bound, and we have our counterexample. An example with no bounds can be constructed through a 1-to-1 map N→Z. —Quondum 15:15, 16 June 2016 (UTC)
Total, Semiconnex: Anti-reflexive: Equivalence relation Preorder (Quasiorder) Partial order Total preorder Total order Prewellordering Well-quasi-ordering Well-ordering Lattice Join-semilattice Meet-semilattice Strict partial order Strict weak order Strict total order Symmetric: Antisymmetric: Connected: Well-founded
Ad
related to: strict total order coupon