Search results
Results from the WOW.Com Content Network
Any parallelepiped tessellates Euclidean 3-space, as do the five parallelohedra including the cube, hexagonal prism, truncated octahedron, and rhombic dodecahedron. Other space-filling polyhedra include the plesiohedra and stereohedra , polyhedra whose tilings have symmetries taking every tile to every other tile, including the gyrobifastigium ...
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.
Set of Catalan solids The rhombic dodecahedron's construction, the dual polyhedron of a cuboctahedron, by Dorman Luke construction. The Catalan solids are the dual polyhedron of Archimedean solids, a set of thirteen polyhedrons with highly symmetric forms semiregular polyhedrons in which two or more polygonal of their faces are met at a vertex. [1]
space-filler, 2As + 1B Tetrahedron 1 self dual, unit volume Coupler 1 space filling oblate octa Cuboctahedron 2.5 edges 1/2, vol. = 1/8 of 20 Duo-Tet Cube 3 24 MITEs Octahedron 4 dual of cube, spacefills w/ tet Rhombic Triacontahedron 5 radius = ~0.9994, vol. = 120 Ts Rhombic Triacontahedron 5+ radius = 1, vol. = 120 Es Rhombic Dodecahedron 6
10 / 3 . 3 / 2 . 10 / 3 ) Great dodecahemidodecahedron: o{3, 5 / 2 } ( 5 / 2 . 10 / 3 . 5 / 3 . 10 / 3 ) Quasiregular dual solids; Rhombic hexahedron (Dual of tetratetrahedron) — V(3.3.3.3) arccos (0) = π / 2 90° Rhombic dodecahedron (Dual of cuboctahedron) — V(3.4.3.4) arccos ...
The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing.
The ideal tetrahedron, cube, octahedron, and dodecahedron form respectively the order-6 tetrahedral honeycomb, order-6 cubic honeycomb, order-4 octahedral honeycomb, and order-6 dodecahedral honeycomb; here the order refers to the number of cells meeting at each edge. However, the ideal icosahedron does not tile space in the same way.
The rhombic dodecahedron, generated from four line segments, no two of which are parallel to a common plane. Its most symmetric form is generated by the four long diagonals of a cube. [2] It tiles space to form the rhombic dodecahedral honeycomb. The elongated dodecahedron, generated from five line segments, with two triples of coplanar segments.