Search results
Results from the WOW.Com Content Network
Crystals can be classified in three ways: lattice systems, crystal systems and crystal families. The various classifications are often confused: in particular the trigonal crystal system is often confused with the rhombohedral lattice system, and the term "crystal system" is sometimes used to mean "lattice system" or "crystal family".
However, the rhombohedral axes are often shown (for the rhombohedral lattice) in textbooks because this cell reveals the 3 m symmetry of the crystal lattice. The rhombohedral unit cell for the hexagonal Bravais lattice is the D-centered [ 1 ] cell, consisting of two additional lattice points which occupy one body diagonal of the unit cell with ...
Regarding the number of atoms in the unit cell, structures in the rhombohedral lattice system have a rhombohedral primitive cell and have trigonal point symmetry but are also often also described in terms of an equivalent but nonprimitive hexagonal unit cell with three times the volume and three times the number of atoms.
R rhombohedral; A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell.
This category lists every crystal element that exists in a rhombohedral structure at STP. Pages in category "Chemical elements with rhombohedral structure" The following 6 pages are in this category, out of 6 total.
It can be used to define the rhombohedral lattice system, a honeycomb with rhombohedral cells. A rhombohedron has two opposite apices at which all face angles are equal; a prolate rhombohedron has this common angle acute, and an oblate rhombohedron has an obtuse angle at these vertices.
With hexagonal and rhombohedral lattice systems, it is possible to use the Bravais–Miller system, which uses four indices (h k i ℓ) that obey the constraint h + k + i = 0. Here h , k and ℓ are identical to the corresponding Miller indices, and i is a redundant index.
The crystal system of rhodochrosite is trigonal, with a structure and cleavage in the carbonate rhombohedral system. The carbonate ions (CO 2− 3) are arranged in a triangular planar configuration, and the manganese ions (Mn 2+) are surrounded by six oxygen ions in an octahedral arrangement.