Search results
Results from the WOW.Com Content Network
Patterns in nature are visible regularities of form found in the natural world. These patterns recur in different contexts and can sometimes be modelled mathematically . Natural patterns include symmetries , trees , spirals , meanders , waves , foams , tessellations , cracks and stripes. [ 1 ]
A wheeled buffalo figurine—probably a children's toy—from Magna Graecia in archaic Greece [1]. Several organisms are capable of rolling locomotion. However, true wheels and propellers—despite their utility in human vehicles—do not play a significant role in the movement of living things (with the exception of certain flagella, which work like corkscrews).
Approximations of this are found in nature. Spirals which do not fit into this scheme of the first 5 examples: A Cornu spiral has two asymptotic points. The spiral of Theodorus is a polygon. The Fibonacci Spiral consists of a sequence of circle arcs. The involute of a circle looks like an Archimedean, but is not: see Involute#Examples.
Symmetry is one class of patterns in nature whereby there is near-repetition of the pattern element, either by reflection or rotation. While sponges and placozoans represent two groups of animals which do not show any symmetry (i.e. are asymmetrical), the body plans of most multicellular organisms exhibit, and are defined by, some form of symmetry.
This list of circle topics includes things related to the geometric shape, either abstractly, as in idealizations studied by geometers, or concretely in physical space. It does not include metaphors like "inner circle" or "circular reasoning" in which the word does not refer literally to the geometric shape.
The only shape that casts a round shadow no matter which direction it is pointed is a sphere, and the ancient Greeks deduced that this must mean Earth is spherical. [ 8 ] The effect could be produced by a disk that always faces the Moon head-on during the eclipse, but this is inconsistent with the fact that the Moon is only rarely directly ...
The experimental reproduction of circular halos is the most difficult using a single crystal only, while it is the simplest and typically achieved one using chemical recipes. Using a single crystal, one needs to realize all possible 3D orientations of the crystal. This has recently been achieved by two approaches.
The ripples formed by dropping a small object into still water naturally form an expanding system of concentric circles. [9] Evenly spaced circles on the targets used in target archery [10] or similar sports provide another familiar example of concentric circles.