Search results
Results from the WOW.Com Content Network
A matrix is in reduced row echelon form if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to and is the only nonzero entry of its column. The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it.
Similarly, the more precise term for U is that it is the row echelon form of the matrix A. Example ... Matrix Calculator with steps, including LU decomposition,
Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...
A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process.
In this case, the determinant of the resulting row echelon form equals the determinant of the initial matrix. As a row echelon form is a triangular matrix, its determinant is the product of the entries of its diagonal. So, the determinant can be computed for almost free from the result of a Gaussian elimination.
Any matrix can be reduced by elementary row operations to a matrix in reduced row echelon form. Two matrices in reduced row echelon form have the same row space if and only if they are equal. This line of reasoning also proves that every matrix is row equivalent to a unique matrix with reduced row echelon form.
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.
The theorem can be read almost directly on the reduced row echelon form as follows. The rank of a matrice is number of nonzero rows in its reduced row echelon form. If the ranks of the coefficient matrix and the augmented matrix are different, then the last non zero row has the form [ 0 … 0 ∣ 1 ] , {\displaystyle [0\ldots 0\mid 1 ...