Search results
Results from the WOW.Com Content Network
This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.
For example, suppose we wish to estimate an upper bound on the area of a given region, that falls inside a particular rectangle P. One can estimate this to within an additive factor of ε times the area of P by first finding an ε -net of P , counting the proportion of elements in the ε-net falling inside the region with respect to the ...
The standard definition of ordinal exponentiation with base α is: =, =, when has an immediate predecessor . = {< <}, whenever is a limit ordinal. From this definition, it follows that for any fixed ordinal α > 1, the mapping is a normal function, so it has arbitrarily large fixed points by the fixed-point lemma for normal functions.
One of the reasons for the importance of the matrix exponential is that it can be used to solve systems of linear ordinary differential equations.The solution of = (), =, where A is a constant matrix and y is a column vector, is given by =.
It also provides the macros FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON, which represent the positive difference between 1.0 and the next greater representable number in the corresponding type (i.e. the ulp of one). [9] The Java standard library provides the functions Math.ulp(double) and Math.ulp(float). They were introduced with Java 1.5.
In mathematics, the pseudospectrum of an operator is a set containing the spectrum of the operator and the numbers that are "almost" eigenvalues.Knowledge of the pseudospectrum can be particularly useful for understanding non-normal operators and their eigenfunctions.
A technical report of Rellich [4] for perturbation of eigenvalue problems provides several examples. The elementary examples are in chapter 2. The report may be downloaded from archive.org. We draw an example in which the eigenvectors have a nasty behavior.
In numerical analysis, the ITP method, short for Interpolate Truncate and Project, is the first root-finding algorithm that achieves the superlinear convergence of the secant method [1] while retaining the optimal [2] worst-case performance of the bisection method. [3]