enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Petrick's method - Wikipedia

    en.wikipedia.org/wiki/Petrick's_method

    Referring to our example: KNP expands to A'B' + BC' + AC where K converts to A'B', N converts to BC', etc. LMQ expands to A'C' + B'C + AB Both products expand to six literals each, so either one can be used. In general, application of Petrick's method is tedious for large charts, but it is easy to implement on a computer. [7]

  3. And–or tree - Wikipedia

    en.wikipedia.org/wiki/And–or_tree

    Given an initial problem P 0 and set of problem solving methods of the form: P if P 1 and … and P n. the associated and–or tree is a set of labelled nodes such that: The root of the tree is a node labelled by P 0. For every node N labelled by a problem or sub-problem P and for every method of the form P if P 1 and ... and P n, there exists ...

  4. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    In other words, any problem in EXPTIME is solvable by a deterministic Turing machine in O(2 p(n)) time, where p(n) is a polynomial function of n. A decision problem is EXPTIME-complete if it is in EXPTIME, and every problem in EXPTIME has a polynomial-time many-one reduction to it. A number of problems are known to be EXPTIME-complete.

  5. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.

  6. Algorithm - Wikipedia

    en.wikipedia.org/wiki/Algorithm

    Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]

  7. ♯P-complete - Wikipedia

    en.wikipedia.org/wiki/%E2%99%AFP-complete

    #P-complete problems are at least as hard as NP-complete problems. [1] A polynomial-time algorithm for solving a #P-complete problem, if it existed, would solve the P versus NP problem by implying that P and NP are equal. No such algorithm is known, nor is a proof known that such an algorithm does not exist.

  8. Flowchart - Wikipedia

    en.wikipedia.org/wiki/Flowchart

    A simple flowchart representing a process for dealing with a non-functioning lamp.. A flowchart is a type of diagram that represents a workflow or process.A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task.

  9. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    However, unless P=NP, any polynomial-time algorithm must asymptotically be wrong on more than polynomially many of the exponentially many inputs of a certain size. [14] "If P=NP, all cryptographic ciphers can be broken." A polynomial-time problem can be very difficult to solve in practice if the polynomial's degree or constants are large enough.