enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    An autoregressive model can thus be viewed as the output of an all-pole infinite impulse response filter whose input is white noise. Some parameter constraints are necessary for the model to remain weak-sense stationary. For example, processes in the AR(1) model with | | are not stationary.

  3. Spatial analysis - Wikipedia

    en.wikipedia.org/wiki/Spatial_analysis

    Spatial analysis of a conceptual geological model is the main purpose of any MPS algorithm. The method analyzes the spatial statistics of the geological model, called the training image, and generates realizations of the phenomena that honor those input multiple-point statistics.

  4. Moran's I - Wikipedia

    en.wikipedia.org/wiki/Moran's_I

    The value of can depend quite a bit on the assumptions built into the spatial weights matrix .The matrix is required because, in order to address spatial autocorrelation and also model spatial interaction, we need to impose a structure to constrain the number of neighbors to be considered.

  5. Stationary process - Wikipedia

    en.wikipedia.org/wiki/Stationary_process

    An example of a discrete-time stationary process where the sample space is also discrete (so that the random variable may take one of N possible values) is a Bernoulli scheme. Other examples of a discrete-time stationary process with continuous sample space include some autoregressive and moving average processes which are both subsets of the ...

  6. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The notation ARMAX(p, q, b) refers to a model with p autoregressive terms, q moving average terms and b exogenous inputs terms. The last term is a linear combination of the last b terms of a known and external time series d t {\displaystyle d_{t}} .

  7. Wold's theorem - Wikipedia

    en.wikipedia.org/wiki/Wold's_theorem

    The autoregressive model is an alternative that may have only a few coefficients if the corresponding moving average has many. These two models can be combined into an autoregressive-moving average (ARMA) model , or an autoregressive-integrated-moving average (ARIMA) model if non-stationarity is involved.

  8. Autoregressive conditional heteroskedasticity - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_conditional...

    Spatial GARCH processes by Otto, Schmid and Garthoff (2018) [15] are considered as the spatial equivalent to the temporal generalized autoregressive conditional heteroscedasticity (GARCH) models. In contrast to the temporal ARCH model, in which the distribution is known given the full information set for the prior periods, the distribution is ...

  9. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    Autoregressive model. Use the partial autocorrelation plot to help identify the order. One or more spikes, rest are essentially zero (or close to zero) Moving average model, order identified by where plot becomes zero. Decay, starting after a few lags Mixed autoregressive and moving average model. All zero or close to zero