Ads
related to: how to solve proportions matheducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Printable Workbooks
helperwizard.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
A proportion is a mathematical statement expressing equality of two ratios. [1] [2]: =: a and d are called extremes, b and c are called means. Proportion can be written as =, where ratios are expressed as fractions.
In elementary algebra, the unitary method is a problem-solving technique taught to students as a method for solving word problems involving proportionality and units of measurement. It consists of first finding the value or proportional amount of a single unit, from the information given in the problem, and then multiplying the result by the ...
Now consider our inverse proportion using the "water triangle". Let L be the height of the water on the left side and R be the height of the water on the right side, then the correct multiplicative strategy can be expressed as L × R = 24; this is a constant product relation.
With inverse proportion, an increase in one variable is associated with a decrease in the other. For instance, in travel, a constant speed dictates a direct proportion between distance and time travelled; in contrast, for a given distance (the constant), the time of travel is inversely proportional to speed: s × t = d.
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer.
Ads
related to: how to solve proportions matheducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife
helperwizard.com has been visited by 10K+ users in the past month