enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  3. Newton's theorem (quadrilateral) - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem...

    Newton's theorem can easily be derived from Anne's theorem considering that in tangential quadrilaterals the combined lengths of opposite sides are equal (Pitot theorem: a + c = b + d). According to Anne's theorem, showing that the combined areas of opposite triangles PAD and PBC and the combined areas of triangles PAB and PCD are equal is ...

  4. Lisa Piccirillo - Wikipedia

    en.wikipedia.org/wiki/Lisa_Piccirillo

    [5] [12] She was a graduate student at the time and spent less than a week working on the knot in her free time to "see what's so hard about this problem" before finding an answer: [11] [13] I think the next day, which was a Sunday, I just started trying to run the approach for fun and I worked on it a bit in the evenings just to try to see ...

  5. Newton–Gauss line - Wikipedia

    en.wikipedia.org/wiki/Newton–Gauss_line

    Labels used in proof concerning complete quadrilateral It is a well-known theorem that the three midpoints of the diagonals of a complete quadrilateral are collinear . [ 2 ] There are several proofs of the result based on areas [ 2 ] or wedge products [ 3 ] or, as the following proof, on Menelaus's theorem , due to Hillyer and published in 1920.

  6. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).

  7. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .

  8. Japanese theorem for cyclic polygons - Wikipedia

    en.wikipedia.org/wiki/Japanese_theorem_for...

    The quadrilateral case follows from a simple extension of the Japanese theorem for cyclic quadrilaterals, which shows that a rectangle is formed by the two pairs of incenters corresponding to the two possible triangulations of the quadrilateral. The steps of this theorem require nothing beyond basic constructive Euclidean geometry.

  9. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]