Search results
Results from the WOW.Com Content Network
A trough is an elongated region of relatively low atmospheric pressure without a closed isobaric contour that would define it as a low pressure area. Since low pressure implies a low height on a pressure surface, troughs and ridges refer to features in an identical sense as those on a topographic map. Troughs may be at the surface, or aloft, at ...
Clouds dissipating in the subtropical ridge. An important atmospheric ridge is the subtropical ridge. It is a series of ridges near the horse latitude characterized by mostly calm winds, which act to reduce air quality under its axis by causing fog overnight, and haze during daylight hours as a result of the stable atmosphere found near its ...
A col, also called saddle point or neutral point, is in meteorology, the point of intersection of a trough and a ridge in the pressure pattern of a weather map. It takes the form of a saddle where the air pressure is relatively higher than that of the low-pressure regions, but lower than that of the anticyclonic zones. [1]
When the zonal flow buckles, the atmosphere can flow in a more longitudinal (or meridional) direction, and thus the term "meridional flow" arises. Meridional flow patterns feature strong, amplified troughs of low pressure and ridges of high pressure, with more north–south flow in the general pattern than west-to-east flow. [10]
Shortwave troughs, are smaller scale waves superimposed on the Rossby waves, with a scale of 1,000 to 4,000 kilometres (600–2,500 mi) long, [27] that move along through the flow pattern around large scale, or longwave, "ridges" and "troughs" within Rossby waves. [28]
Shortwave trough with associated vorticity. A shortwave or shortwave trough is an embedded kink in the trough / ridge pattern. Its length scale is much smaller than that of and is embedded within longwaves, which are responsible for the largest scale (synoptic scale) weather systems.
A Code Orange air quality alert affects the central and western part of the state. Here’s what to know.
Zonal wavenumbers are typically counted on the upper level (say 500-millibar) geopotential maps by identifying troughs and ridges of the waves. Wavenumber 1 has one trough and one ridge, i.e. one wavelength fits 2π = 360°. Wavenumber 2 has two ridges and two troughs around 360°. Wavenumber 0 corresponds to zonal (symmetric) flow.