Search results
Results from the WOW.Com Content Network
Ethane is only very sparingly soluble in water. The bond parameters of ethane have been measured to high precision by microwave spectroscopy and electron diffraction: r C−C = 1.528(3) Å, r C−H = 1.088(5) Å, and ∠CCH = 111.6(5)° by microwave and r C−C = 1.524(3) Å, r C−H = 1.089(5) Å, and ∠CCH = 111.9(5)° by electron ...
Ethane: 5.562 0.0638 Ethanethiol: 11.39 0.08098 Ethanol: 12.18 0.08407 Ethyl acetate: 20.72 0.1412 Ethylamine: 10.74 0.08409 Ethylene [2] 4.612 0.0582 Fluorine [2] 1.171 0.0290 Fluorobenzene: 20.19 0.1286 Fluoromethane: 4.692 0.05264 Freon: 10.78 0.0998 Furan [2] 12.74 0.0926 Germanium tetrachloride: 22.90 0.1485 Helium: 0.0346 0.0238 Heptane ...
Phase behavior Triple point: 91 K (−182 °C), 1.1 Pa Critical point: 305.3 K (32.2 °C), 4.9 MPa Std enthalpy change of fusion, Δ fus H o: 9.76 kJ/mol at −182 °C
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
Although hydrogen bonding is a relatively weak attraction compared to the covalent bonds within the water molecule itself, it is responsible for several of the water's physical properties. These properties include its relatively high melting and boiling point temperatures: more energy is required to break the hydrogen bonds between water molecules.
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...
For example, the C−H bond length is 110.2 pm in ethane, 108.5 pm in ethylene and 106.1 pm in acetylene, with carbon hybridizations sp 3 (25% s), sp 2 (33% s) and sp (50% s) respectively. To determine the degree of hybridization of each bond one can utilize a hybridization parameter ( λ ).
The dashed green line shows the anomalous behavior of water. For simplicity and clarity, the generic notion of critical point is best introduced by discussing a specific example, the vapor–liquid critical point. This was the first critical point to be discovered, and it is still the best known and most studied one.