Search results
Results from the WOW.Com Content Network
Ferroniobium is an important iron-niobium alloy, with a niobium content of 60-70%. [1] It is the main source for niobium alloying of HSLA steel and covers more than 80% of the worldwide niobium production.
Brazil is the leading producer of niobium and ferroniobium, an alloy of 60–70% niobium with iron. Niobium is used mostly in alloys, the largest part in special steel such as that used in gas pipelines. Although these alloys contain a maximum of 0.1%, the small percentage of niobium enhances the strength of the steel by scavenging carbide and ...
The aluminothermic reaction is used for the production of several ferroalloys, for example ferroniobium from niobium pentoxide and ferrovanadium from iron, vanadium(V) oxide, and aluminium. [1] [2] The process begins with the reduction of the oxide by the aluminium: 3 V 2 O 5 + 10 Al → 5 Al 2 O 3 + 6 V
The most common commercial niobium alloys are ferroniobium and nickel-niobium, produced by thermite reduction of appropriate mixtures of the oxides; these are not usable as engineering materials, but are used as convenient sources of niobium for specialist steels and nickel-based superalloys. Going via an iron-niobium or nickel-niobium alloy ...
High-strength low-alloy steel (HSLA) is a type of alloy steel that provides better mechanical properties or greater resistance to corrosion than carbon steel.HSLA steels vary from other steels in that they are not made to meet a specific chemical composition but rather specific mechanical properties.
In the United States, the steel industry accounted for virtually all the ferronickel consumed in 2008, with more than 98% used in stainless and heat-resistant steels; no ferronickel was produced in the US in 2008. [2] The nickel pig iron is a low grade ferronickel made in China, which is very popular since the 2010s.
The result is aluminium oxide and ferroniobium, an alloy of iron and niobium used in steel production. [83] [84] Ferroniobium contains between 60 and 70% niobium. [85] Without iron oxide, the aluminothermic process is used to produce niobium. Further purification is necessary to reach the grade for superconductive alloys.
In the era of commercial wrought iron, blooms were slag-riddled iron castings poured in a bloomery before being worked into wrought iron. In the era of commercial steel, blooms are intermediate-stage pieces of steel produced by a first pass of rolling (in a blooming mill) that works the ingots down to a smaller cross-sectional area, but still greater than 36 in 2 (230 cm 2). [1]