Search results
Results from the WOW.Com Content Network
It is the first step of viral replication. Some viruses attach to the cell membrane of the host cell and inject its DNA or RNA into the host to initiate infection. Attachment to a host cell is often achieved by a virus attachment protein that extends from the protein shell (), of a virus.
For the virus to reproduce and thereby establish infection, it must enter cells of the host organism and use those cells' materials. To enter the cells, proteins on the surface of the virus interact with proteins of the cell. Attachment, or adsorption, occurs between the viral particle and the host cell membrane.
Viruses may have once been small cells that parasitised larger cells. Eventually, the genes they no longer needed for a parasitic way of life were lost. The bacteria Rickettsia and Chlamydia are living cells that, like viruses, can reproduce only inside host cells. This lends credence to this theory, as their dependence on being parasites may ...
The lytic cycle (/ ˈ l ɪ t ɪ k / LIT-ik) is one of the two cycles of viral reproduction (referring to bacterial viruses or bacteriophages), the other being the lysogenic cycle. The lytic cycle results in the destruction of the infected cell and its membrane.
A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. [1] Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. [2] [3] Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity.
Unlike viruses, they are living organisms that can live and reproduce on their own. The vast majority of bacteria don’t hurt us, and many – like the ones that live in our gut and help digest ...
Viral transformation is the change in growth, phenotype, or indefinite reproduction of cells caused by the introduction of inheritable material. Through this process, a virus causes harmful transformations of an in vivo cell or cell culture. The term can also be understood as DNA transfection using a viral vector. Figure 1: Hepatitis-B virions
Viral evolution is a subfield of evolutionary biology and virology that is specifically concerned with the evolution of viruses. [1] [2] Viruses have short generation times, and many—in particular RNA viruses—have relatively high mutation rates (on the order of one point mutation or more per genome per round of replication).