enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1] Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces , the hypersurface of the tesseract consists of eight cubical cells , meeting at right ...

  3. Hypercube - Wikipedia

    en.wikipedia.org/wiki/Hypercube

    In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.

  4. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Three-dimensional objects are bounded by two-dimensional surfaces: a cube is bounded by 6 square faces. By applying dimensional analogy, one may infer that a four-dimensional cube, known as a tesseract, is bounded by three-dimensional volumes. And indeed, this is the case: mathematics shows that the tesseract is bounded by 8 cubes.

  5. 5-cube - Wikipedia

    en.wikipedia.org/wiki/5-cube

    In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol {4,3,3,3} or {4,3 3 }, constructed as 3 tesseracts, {4,3,3}, around each cubic ridge .

  6. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing circles in a square - closely related to spreading points in a unit square with the objective of finding the greatest minimal separation, d n, between points. To convert between these two formulations of the problem, the square side for unit circles will be L = 2 + 2 / d n {\displaystyle L=2+2/d_{n}} .

  7. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    The cube can be represented as the cell, and examples of a honeycomb are cubic honeycomb, order-5 cubic honeycomb, order-6 cubic honeycomb, and order-7 cubic honeycomb. [47] The cube can be constructed with six square pyramids, tiling space by attaching their apices. [48] Polycube is a

  8. Square–cube law - Wikipedia

    en.wikipedia.org/wiki/Squarecube_law

    Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the squarecube law.

  9. Unit cube - Wikipedia

    en.wikipedia.org/wiki/Unit_cube

    Sometimes the term "unit cube" refers in specific to the set [0, 1] n of all n-tuples of numbers in the interval [0, 1]. [1] The length of the longest diagonal of a unit hypercube of n dimensions is , the square root of n and the (Euclidean) length of the vector (1,1,1,....1,1) in n-dimensional space. [2]