enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.

  3. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    A signed (meaning positive or negative) digit string of a given length in a given base (or radix). This digit string is referred to as the significand, mantissa, or coefficient. [nb 1] The length of the significand determines the precision to which numbers can be represented. The radix point position is assumed always to be somewhere within the ...

  4. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.

  5. Mantissa - Wikipedia

    en.wikipedia.org/wiki/Mantissa

    Mantissa (/ m æ n ˈ t ɪ s ə /) may refer to: Mantissa (logarithm), the fractional part of the common (base-10) logarithm; Significand (also commonly called mantissa), the significant digits of a floating-point number or a number in scientific notation; Mantissa (band) Mantissa, a 1982 novel by John Fowles; Mantissa College

  6. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    The significand (or mantissa) of an IEEE floating-point number is the part of a floating-point number that represents the significant digits. For a positive normalised number, it can be represented as m 0 . m 1 m 2 m 3 ... m p −2 m p −1 (where m represents a significant digit, and p is the precision) with non-zero m 0 .

  7. Exponent bias - Wikipedia

    en.wikipedia.org/wiki/Exponent_bias

    When interpreting the floating-point number, the bias is subtracted to retrieve the actual exponent. For a half-precision number, the exponent is stored in the range 1 .. 30 (0 and 31 have special meanings), and is interpreted by subtracting the bias for an 5-bit exponent (15) to get an exponent value in the range −14 .. +15.

  8. Talk:Significand - Wikipedia

    en.wikipedia.org/wiki/Talk:Significand

    By the way, your dismissive comment that the fp meaning of "mantissa" is only used in the "rather smaller field of computing" is not supported by the fact that a literature search above (including science, engineering, and math journals) turns up far far more fp usages of mantissa than logarithmic usages.

  9. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    This definition of exponentiation with negative exponents is the only one that allows extending the identity + = to negative exponents (consider the case =). The same definition applies to invertible elements in a multiplicative monoid , that is, an algebraic structure , with an associative multiplication and a multiplicative identity denoted 1 ...