enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    In most cases, including even simple curves, there are no closed-form solutions for arc length and numerical integration is necessary. Numerical integration of the arc length integral is usually very efficient. For example, consider the problem of finding the length of a quarter of the unit circle by numerically integrating the arc length integral.

  3. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures ...

  4. Line element - Wikipedia

    en.wikipedia.org/wiki/Line_element

    The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...

  5. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.

  6. Involute - Wikipedia

    en.wikipedia.org/wiki/Involute

    Its length is changed by an amount equal to the arc length traversed as it winds or unwinds. Arc length of the curve traversed in the interval [,] is given by | ′ | where is the starting point from where the arc length is measured. Since the tangent vector depicts the taut string here, we get the string vector as

  7. Semicubical parabola - Wikipedia

    en.wikipedia.org/wiki/Semicubical_parabola

    The semicubical parabola was discovered in 1657 by William Neile who computed its arc length. Although the lengths of some other non-algebraic curves including the logarithmic spiral and cycloid had already been computed (that is, those curves had been rectified ), the semicubical parabola was the first algebraic curve (excluding the line and ...

  8. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}

  9. Fermat's spiral - Wikipedia

    en.wikipedia.org/wiki/Fermat's_spiral

    The Fermat spiral with polar equation = can be converted to the Cartesian coordinates (x, y) by using the standard conversion formulas x = r cos φ and y = r sin φ.Using the polar equation for the spiral to eliminate r from these conversions produces parametric equations for one branch of the curve: