Search results
Results from the WOW.Com Content Network
Levinthal's paradox is a thought experiment in the field of computational protein structure prediction; protein folding seeks a stable energy configuration. An algorithmic search through all possible conformations to identify the minimum energy configuration (the native state) would take an immense duration; however in reality protein folding happens very quickly, even in the case of the most ...
Prof. David Baker, a protein research scientist at the University of Washington, founded the Foldit project.Seth Cooper was the lead game designer. Before starting the project, Baker and his laboratory coworkers relied on another research project named Rosetta [5] to predict the native structures of various proteins using special computer protein structure prediction algorithms.
Protein primary structure is the linear sequence of amino acids in a peptide or protein. [1] By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthesis is most commonly performed by ribosomes in cells. Peptides can also be synthesized in the ...
In biochemistry, a Ramachandran plot (also known as a Rama plot, a Ramachandran diagram or a [φ,ψ] plot), originally developed in 1963 by G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, [1] is a way to visualize energetically allowed regions for backbone dihedral angles ( also called as torsional angles , phi and psi angles ) ψ ...
PTPs (protein tyrosine phosphatases) that catalyse the hydrolysis of an inorganic phosphate from a phosphotyrosine residue (the reverse of a tyrosine kinase reaction) contain a motif which folds into a P-loop-like structure with an arginine in the place of the conserved lysine.
Peptidoglycan. The peptidoglycan layer within the bacterial cell wall is a crystal lattice structure formed from linear chains of two alternating amino sugars, namely N-acetylglucosamine (GlcNAc or NAG) and N-acetylmuramic acid (MurNAc or NAM).
The rotating view of a smoothed chain of a knotted protein (PDB ID: 1xd3) Knotted proteins are proteins whose backbones entangle themselves in a knot. One can imagine pulling a protein chain from both termini, as though pulling a string from both ends. When a knotted protein is “pulled” from both termini, it does not get disentangled.
Protein sequence interpretation: a scheme new protein to be engineered in a yeast. It is often desirable to know the unordered amino acid composition of a protein prior to attempting to find the ordered sequence, as this knowledge can be used to facilitate the discovery of errors in the sequencing process or to distinguish between ambiguous results.