enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    It follows that arbitrarily large prime numbers can be found as the prime factors of the numbers !, leading to a proof of Euclid's theorem that the number of primes is infinite. [35] When n ! ± 1 {\displaystyle n!\pm 1} is itself prime it is called a factorial prime ; [ 36 ] relatedly, Brocard's problem , also posed by Srinivasa Ramanujan ...

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  4. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, n ! ! = ∏ k = 0 ⌈ n 2 ⌉ − 1 ( n − 2 k ) = n ( n − 2 ) ( n − 4 ) ⋯ . {\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k ...

  5. Derangement - Wikipedia

    en.wikipedia.org/wiki/Derangement

    The number of derangements of a set of size n is known as the subfactorial of n or the n th derangement number or n th de Montmort number (after Pierre Remond de Montmort). Notations for subfactorials in common use include !n, D n, d n, or n¡ . [a] [1] [2] For n > 0 , the subfactorial !n equals the nearest integer to n!/e, where n!

  6. Brocard's problem - Wikipedia

    en.wikipedia.org/wiki/Brocard's_problem

    Brocard's problem is a problem in mathematics that seeks integer values of such that ! + is a perfect square, where ! is the factorial. Only three values of n {\displaystyle n} are known — 4, 5, 7 — and it is not known whether there are any more.

  7. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    De Moivre gave an approximate rational-number expression for the natural logarithm of the constant. Stirling's contribution consisted of showing that the constant is precisely 2 π {\displaystyle {\sqrt {2\pi }}} .

  8. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n.

  9. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The rising factorial is also integral to the definition of the hypergeometric function: The hypergeometric function is defined for | | < by the power series (,;;) = = () ()! provided that ,,, …. Note, however, that the hypergeometric function literature typically uses the notation ( a ) n {\displaystyle (a)_{n}} for rising factorials.