enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    It follows that arbitrarily large prime numbers can be found as the prime factors of the numbers !, leading to a proof of Euclid's theorem that the number of primes is infinite. [35] When n ! ± 1 {\displaystyle n!\pm 1} is itself prime it is called a factorial prime ; [ 36 ] relatedly, Brocard's problem , also posed by Srinivasa Ramanujan ...

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  4. Derangement - Wikipedia

    en.wikipedia.org/wiki/Derangement

    The number of derangements of a set of size n is known as the subfactorial of n or the n th derangement number or n th de Montmort number (after Pierre Remond de Montmort). Notations for subfactorials in common use include !n, D n, d n, or n¡ . [a] [1] [2] For n > 0 , the subfactorial !n equals the nearest integer to n!/e, where n!

  5. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    Given real numbers x and y, integers m and n and the set of integers, floor and ceiling may be defined by the equations ⌊ ⌋ = {}, ⌈ ⌉ = {}. Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation

  6. Recursive definition - Wikipedia

    en.wikipedia.org/wiki/Recursive_definition

    The definition may also be thought of as giving a procedure for computing the value of the function n!, starting from n = 0 and proceeding onwards with n = 1, 2, 3 etc. The recursion theorem states that such a definition indeed defines a function that is unique. The proof uses mathematical induction. [1]

  7. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n.

  8. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    The mathematical constant e can be represented in a variety of ways as a real number.Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction.

  9. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The falling factorial can be extended to real values of using the gamma function provided and + are real numbers that are not negative integers: = (+) (+) , and so can the rising factorial: = (+) . Calculus