enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expansion of the universe - Wikipedia

    en.wikipedia.org/wiki/Expansion_of_the_universe

    The former distance is about 4 billion light-years, much smaller than ct, whereas the latter distance (shown by the orange line) is about 28 billion light-years, much larger than ct. In other words, if space were not expanding today, it would take 28 billion years for light to travel between Earth and the quasar, while if the expansion had ...

  3. Accelerating expansion of the universe - Wikipedia

    en.wikipedia.org/wiki/Accelerating_expansion_of...

    Spectral lines of their light can be used to determine their redshift. For supernovae at redshift less than around 0.1, or light travel time less than 10 percent of the age of the universe, this gives a nearly linear distance–redshift relation due to Hubble's law. At larger distances, since the expansion rate of the universe has changed over ...

  4. Cosmological horizon - Wikipedia

    en.wikipedia.org/wiki/Cosmological_horizon

    The particle horizon, also called the cosmological horizon, the comoving horizon, or the cosmic light horizon, is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. It represents the boundary between the observable and the unobservable regions of the universe, so its distance at ...

  5. Big Bang - Wikipedia

    en.wikipedia.org/wiki/Big_Bang

    Therefore, it is not remarkable that according to Hubble's law, galaxies farther than the Hubble distance recede faster than the speed of light. Such recession speeds do not correspond to faster-than-light travel. Many popular accounts attribute the cosmological redshift to the expansion of space. This can be misleading because the expansion of ...

  6. Ultimate fate of the universe - Wikipedia

    en.wikipedia.org/wiki/Ultimate_fate_of_the_universe

    However, only a portion of the universe would be destroyed by the Big Slurp while most of the universe would still be unaffected because galaxies located further than 4,200 megaparsecs (13 billion light-years) away from each other are moving away from each other faster than the speed of light while the Big Slurp itself cannot expand faster than ...

  7. Observable universe - Wikipedia

    en.wikipedia.org/wiki/Observable_universe

    In the future, light from distant galaxies will have had more time to travel, so one might expect that additional regions will become observable. Regions distant from observers (such as us) are expanding away faster than the speed of light, at rates estimated by Hubble's law.

  8. Cosmic inflation - Wikipedia

    en.wikipedia.org/wiki/Cosmic_inflation

    The spatial slices are expanding very fast to cover huge volumes. Things are constantly moving beyond the cosmological horizon, which is a fixed distance away, and everything becomes homogeneous. As the inflationary field slowly relaxes to the vacuum, the cosmological constant goes to zero and space begins to expand normally.

  9. Faster-than-light - Wikipedia

    en.wikipedia.org/wiki/Faster-than-light

    In the context of this article, "faster-than-light" means the transmission of information or matter faster than c, a constant equal to the speed of light in vacuum, which is 299,792,458 m/s (by definition of the metre) [3] or about 186,282.397 miles per second. This is not quite the same as traveling faster than light, since: