enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equality_(mathematics)

    In some cases, one may consider as equal two mathematical objects that are only equivalent for the properties and structure being considered. The word congruence (and the associated symbol ≅ {\displaystyle \cong } ) is frequently used for this kind of equality, and is defined as the quotient set of the isomorphism classes between the objects.

  3. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number is equal to itself (reflexive).

  4. Equivalence class - Wikipedia

    en.wikipedia.org/wiki/Equivalence_class

    In mathematics, when the elements of some set have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set into equivalence classes. These equivalence classes are constructed so that elements a {\displaystyle a} and b {\displaystyle b} belong to the same equivalence class if, and only if , they are ...

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).

  6. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    The equivalence class of a set A under this relation, then, consists of all those sets which have the same cardinality as A. There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each

  7. Equinumerosity - Wikipedia

    en.wikipedia.org/wiki/Equinumerosity

    In mathematics, two sets or classes A and B are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from A to B such that for every element y of B, there is exactly one element x of A with f(x) = y. [1] Equinumerous sets are said to have the same cardinality (number of ...

  8. Equivalence (measure theory) - Wikipedia

    en.wikipedia.org/wiki/Equivalence_(measure_theory)

    Define the two measures on the real line as = [,] () = [,] for all Borel sets. Then and are equivalent, since all sets outside of [,] have and measure zero, and a set inside [,] is a -null set or a -null set exactly when it is a null set with respect to Lebesgue measure.

  9. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...