Search results
Results from the WOW.Com Content Network
[1]: 117 The formula above is known as the Langevin paramagnetic equation. Pierre Curie found an approximation to this law that applies to the relatively high temperatures and low magnetic fields used in his experiments. As temperature increases and magnetic field decreases, the argument of the hyperbolic tangent decreases.
Assuming the external magnetic field is uniform and shares a common axis with the paramagnet, the extensive parameter characterizing the magnetic state is , the magnetic dipole moment of the system. The fundamental thermodynamic relation describing the system will then be of the form U = U ( S , V , I , N ) {\displaystyle U=U(S,V,I,N)} .
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
These equations are inhomogeneous versions of the wave equation, with the terms on the right side of the equation serving as the source functions for the wave. As with any wave equation, these equations lead to two types of solution: advanced potentials (which are related to the configuration of the sources at future points in time), and ...
The magnetic field generated by a steady current I (a constant flow of electric charges, in which charge neither accumulates nor is depleted at any point) [note 8] is described by the Biot–Savart law: [21]: 224 = ^, where the integral sums over the wire length where vector dℓ is the vector line element with direction in the same sense as ...
There are two London equations when expressed in terms of measurable fields: =, =. Here is the (superconducting) current density, E and B are respectively the electric and magnetic fields within the superconductor, is the charge of an electron or proton, is electron mass, and is a phenomenological constant loosely associated with a number density of superconducting carriers.
In physics and materials science, the Curie temperature (T C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism is lost at a critical temperature. [1]
Maxwell's equations posit that there is electric charge, but no magnetic charge (also called magnetic monopoles), in the universe. Indeed, magnetic charge has never been observed, despite extensive searches, [note 7] and may not exist. If they did exist, both Gauss's law for magnetism and Faraday's law would need to be modified, and the ...