Search results
Results from the WOW.Com Content Network
The Navier–Stokes equations assume that the fluid being studied is a continuum (it is infinitely divisible and not composed of particles such as atoms or molecules), and is not moving at relativistic velocities. At very small scales or under extreme conditions, real fluids made out of discrete molecules will produce results different from the ...
This equation is called the mass continuity equation, or simply the continuity equation. This equation generally accompanies the Navier–Stokes equation. In the case of an incompressible fluid, Dρ / Dt = 0 (the density following the path of a fluid element is constant) and the equation reduces to:
In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...
Navier–Stokes equation and the continuity equation [ edit ] In order to analytically find the stability of fluid flows, it is useful to note that hydrodynamic stability has a lot in common with stability in other fields, such as magnetohydrodynamics , plasma physics and elasticity ; although the physics is different in each case, the ...
In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...
The equation of motion for Stokes flow can be obtained by linearizing the steady state Navier–Stokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the Navier–Stokes equations reduces it to the momentum balance in the Stokes equations: [1]
Gas flow can be grouped in four regimes: For Kn≤0.001, flow is continuous, and the Navier–Stokes equations are applicable, from 0.001<Kn<0.1, slip flow occurs, from 0.1≤Kn<10, transitional flow occurs and for Kn≥10, free molecular flow occurs. [6] In free molecular flow, the pressure of the remaining gas can be considered as effectively ...
The general expression for conservation of momentum of an incompressible, Newtonian fluid (the Navier–Stokes equations) is + = + +, where ν (nu) is the kinematic viscosity and F is the sum of any body forces such as gravity.