enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The NavierStokes equations assume that the fluid being studied is a continuum (it is infinitely divisible and not composed of particles such as atoms or molecules), and is not moving at relativistic velocities. At very small scales or under extreme conditions, real fluids made out of discrete molecules will produce results different from the ...

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This equation is called the mass continuity equation, or simply the continuity equation. This equation generally accompanies the NavierStokes equation. In the case of an incompressible fluid, ⁠ Dρ / Dt ⁠ = 0 (the density following the path of a fluid element is constant) and the equation reduces to:

  4. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_existence...

    In mathematics, the NavierStokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  5. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    NavierStokes equation and the continuity equation [ edit ] In order to analytically find the stability of fluid flows, it is useful to note that hydrodynamic stability has a lot in common with stability in other fields, such as magnetohydrodynamics , plasma physics and elasticity ; although the physics is different in each case, the ...

  6. Non-dimensionalization and scaling of the Navier–Stokes ...

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the NavierStokes equations is the conversion of the NavierStokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...

  7. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    The equation of motion for Stokes flow can be obtained by linearizing the steady state NavierStokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the NavierStokes equations reduces it to the momentum balance in the Stokes equations: [1]

  8. Free molecular flow - Wikipedia

    en.wikipedia.org/wiki/Free_molecular_flow

    Gas flow can be grouped in four regimes: For Kn≤0.001, flow is continuous, and the NavierStokes equations are applicable, from 0.001<Kn<0.1, slip flow occurs, from 0.1≤Kn<10, transitional flow occurs and for Kn≥10, free molecular flow occurs. [6] In free molecular flow, the pressure of the remaining gas can be considered as effectively ...

  9. Boussinesq approximation (buoyancy) - Wikipedia

    en.wikipedia.org/wiki/Boussinesq_approximation...

    The general expression for conservation of momentum of an incompressible, Newtonian fluid (the NavierStokes equations) is + = + +, where ν (nu) is the kinematic viscosity and F is the sum of any body forces such as gravity.