enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. GPT-1 - Wikipedia

    en.wikipedia.org/wiki/GPT-1

    Generative Pre-trained Transformer 1 (GPT-1) was the first of OpenAI's large language models following Google's invention of the transformer architecture in 2017. [2] In June 2018, OpenAI released a paper entitled "Improving Language Understanding by Generative Pre-Training", [ 3 ] in which they introduced that initial model along with the ...

  3. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    The semi-supervised approach OpenAI employed to make a large-scale generative system—and was first to do with a transformer model—involved two stages: an unsupervised generative "pretraining" stage to set initial parameters using a language modeling objective, and a supervised discriminative "fine-tuning" stage to adapt these parameters to ...

  4. Weak supervision - Wikipedia

    en.wikipedia.org/wiki/Weak_supervision

    The heuristic approach of self-training (also known as self-learning or self-labeling) is historically the oldest approach to semi-supervised learning, [2] with examples of applications starting in the 1960s. [5] The transductive learning framework was formally introduced by Vladimir Vapnik in the 1970s. [6]

  5. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  7. Multimodal learning - Wikipedia

    en.wikipedia.org/wiki/Multimodal_learning

    Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...

  8. Whisper (speech recognition system) - Wikipedia

    en.wikipedia.org/wiki/Whisper_(speech...

    OpenAI claims that the combination of different training data used in its development has led to improved recognition of accents, background noise and jargon compared to previous approaches. [ 3 ] Whisper is a weakly-supervised deep learning acoustic model , made using an encoder-decoder transformer architecture .

  9. Domain adaptation - Wikipedia

    en.wikipedia.org/wiki/Domain_Adaptation

    Semi-supervised: Most data that is available from the target domain is unlabelled, but some labeled data is also available. In the above-mentioned case of spam filter design, this corresponds to the case that the target user has labeled some emails as being spam or not. Supervised: All data that is available from the target domain is labeled ...