Search results
Results from the WOW.Com Content Network
It is defined as one kilocalorie of energy (1000 thermochemical gram calories) per one mole of substance. The unit symbol is written kcal/mol or kcal⋅mol −1. As typically measured, one kcal/mol represents a temperature increase of one degree Celsius in one liter of water (with a mass of 1 kg) resulting from the reaction of one mole of reagents.
kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on E ...
The SI unit of molar heat capacity heat is joule per kelvin per mole (J/(K⋅mol), J/(K mol), J K −1 mol −1, etc.). Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same as joule per degree Celsius per mole (J/(°C⋅mol)).
The "grand calorie" (also "kilocalorie", "kilogram-calorie", or "food calorie"; "kcal" or "Cal") is 1000 cal, that is, exactly 4184 J. It was originally defined so that the heat capacity of 1 kg of water would be 1 kcal/°C. With these units of heat energy, the units of heat capacity are 1 cal/°C = 4.184 J/K ; 1 kcal/°C = 4184 J/K.
In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1] The activation energy (E a) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [2]
In other scientific contexts, the term "calorie" and the symbol "cal" almost always refers to the small unit; the "large" unit being generally called "kilocalorie" with symbol "kcal". It is mostly used to express the amount of energy released in a chemical reaction or phase change, typically per mole of substance, as in kilocalories per mole. [32]
Theoretical chemistry requires quantities from core physics, such as time, volume, temperature, and pressure.But the highly quantitative nature of physical chemistry, in a more specialized way than core physics, uses molar amounts of substance rather than simply counting numbers; this leads to the specialized definitions in this article.
For a fuel of composition C c H h O o N n, the (higher) heat of combustion is 419 kJ/mol × (c + 0.3 h − 0.5 o) usually to a good approximation (±3%), [2] [3] though it gives poor results for some compounds such as (gaseous) formaldehyde and carbon monoxide, and can be significantly off if o + n > c, such as for glycerine dinitrate, C 3 H 6 ...