enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In geometric measure theory, integration by substitution is used with Lipschitz functions. A bi-Lipschitz function is a Lipschitz function φ : U → R n which is injective and whose inverse function φ −1 : φ(U) → U is also Lipschitz. By Rademacher's theorem, a bi-Lipschitz mapping is differentiable almost everywhere.

  3. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    Example 1a. The function is f(x, y) = (x − 1) 2 + √ y; if one adopts the substitution u = x − 1, v = y therefore x = u + 1, y = v one obtains the new function f 2 (u, v) = (u) 2 + √ v. Similarly for the domain because it is delimited by the original variables that were transformed before (x and y in example)

  4. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:

  5. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.

  6. Feynman parametrization - Wikipedia

    en.wikipedia.org/wiki/Feynman_parametrization

    Feynman parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. However, it is sometimes useful in integration in areas of pure mathematics as well.

  7. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  8. Euler substitution - Wikipedia

    en.wikipedia.org/wiki/Euler_substitution

    This integral can be transformed by the substitution + + = + into another integral ~ ⁡ (~ ()), where ~ and ~ are now simply rational functions of . In principle, factorization and partial fraction decomposition can be employed to break the integral down into simple terms, which can be integrated analytically through use of the dilogarithm ...

  9. List of integrals of rational functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form: