Search results
Results from the WOW.Com Content Network
If lactose is fermented (as in yogurts and cheeses), it is first converted into glucose and galactose (both six-carbon sugars with the same atomic formula): C 12 H 22 O 11 + H 2 O → 2 C 6 H 12 O 6. Heterolactic fermentation is in a sense intermediate between lactic acid fermentation and other types, e.g. alcoholic fermentation. Reasons to go ...
Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce.Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics.
Knallgas bacteria stand out from other hydrogen-oxidizing bacteria that, although using H 2 as energy source, are not able to fix CO 2, as Knallgas do. [ 27 ] This aerobic hydrogen oxidation (H 2 + O 2 {\displaystyle \longrightarrow } H 2 O), also known as the Knallgas reaction, releases a considerable amount of energy, having a ΔG o of –237 ...
Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...
These bacteria produce lactic acid in the milk culture, decreasing its pH and causing it to congeal. The bacteria also produce compounds that give yogurt its distinctive flavor. An additional effect of the lowered pH is the incompatibility of the acidic environment with many other types of harmful bacteria. [10] [18]
Using synthetic biology, bacteria can be genetically altered to enhance this reaction. [2] [3] Photofermentation differs from dark fermentation, because it only proceeds in the presence of light. Electrohydrogenesis is used in microbial fuel cells.
The heliobacteria are phototrophic: they convert light energy into chemical energy using a type I reaction center. [6] [7] The primary pigment involved is bacteriochlorophyll g, which is unique to the group and has a unique absorption spectrum; this gives the heliobacteria their own environmental niche. [5]
Aerobic denitrifiers are mainly Gram-negative bacteria in the phylum Proteobacteria. Enzymes NapAB, NirS, NirK and NosZ are located in the periplasm, a wide space bordered by the cytoplasmic and the outer membrane in Gram-negative bacteria. [16] A variety of environmental factors can influence the rate of denitrification on an ecosystem-wide scale.