Search results
Results from the WOW.Com Content Network
The relational algebra uses set union, set difference, and Cartesian product from set theory, and adds additional constraints to these operators to create new ones.. For set union and set difference, the two relations involved must be union-compatible—that is, the two relations must have the same set of attributes.
An associative entity is a term used in relational and entity–relationship theory. A relational database requires the implementation of a base relation (or base table) to resolve many-to-many relationships. A base relation representing this kind of entity is called, informally, an associative table. An associative entity (using Chen notation)
As an example, if a database schema contains the relation symbols Father (binary, who's the father of whom) and Employed (unary, who is employed), a conjunctive query could be (,) (). This query evaluates to true if there exists an individual x who is a child of Mark and employed.
Conjunctive queries without distinguished variables are called boolean conjunctive queries.Conjunctive queries where all variables are distinguished (and no variables are bound) are called equi-join queries, [1] because they are the equivalent, in the relational calculus, of the equi-join queries in the relational algebra (when selecting all columns of the result).
In relational algebra, a selection (sometimes called a restriction in reference to E.F. Codd's 1970 paper [1] and not, contrary to a popular belief, to avoid confusion with SQL's use of SELECT, since Codd's article predates the existence of SQL) is a unary operation that denotes a subset of a relation.
In relational algebra, a projection is a unary operation written as ,..., (), where is a relation and ,..., are attribute names. Its result is defined as the set obtained when the components of the tuples in are restricted to the set {,...,} – it discards (or excludes) the other attributes.
For example, think of A as Authors, and B as Books. An Author can write several Books, and a Book can be written by several Authors. In a relational database management system, such relationships are usually implemented by means of an associative table (also known as join table, junction table or cross-reference table), say, AB with two one-to-many relationships A → AB and B → AB.
In relational algebra, a rename is a unary operation written as / where: . R is a relation; a and b are attribute names; b is an attribute of R; The result is identical to R except that the b attribute in all tuples is renamed to a. [1]