enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    Electric charge is a conserved property: the net charge of an isolated system, the quantity of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms ...

  3. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    An ideal capacitor is characterized by a constant capacitance C, in farads in the SI system of units, defined as the ratio of the positive or negative charge Q on each conductor to the voltage V between them: [23] = A capacitance of one farad (F) means that one coulomb of charge on each conductor causes a voltage of one volt across the device. [25]

  4. Electrostatic induction - Wikipedia

    en.wikipedia.org/wiki/Electrostatic_induction

    If the external charge is negative, the polarity of the charged regions will be reversed. Since this process is just a redistribution of the charges that were already in the object, it doesn't change the total charge on the object; it still has no net charge. This induction effect is reversible; if the nearby charge is removed, the attraction ...

  5. Charge conservation - Wikipedia

    en.wikipedia.org/wiki/Charge_conservation

    The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is always conserved. Charge conservation, considered as a physical conservation law , implies that the change in the amount of electric charge in any volume of space is exactly equal to the amount of charge flowing into the ...

  6. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    Consider a capacitor of capacitance C, holding a charge +q on one plate and −q on the other. Moving a small element of charge d q from one plate to the other against the potential difference V = q / C requires the work d W : d W = q C d q , {\displaystyle \mathrm {d} W={\frac {q}{C}}\,\mathrm {d} q,} where W is the work measured in joules, q ...

  7. Depletion region - Wikipedia

    en.wikipedia.org/wiki/Depletion_region

    In semiconductor physics, the depletion region, also called depletion layer, depletion zone, junction region, space charge region, or space charge layer, is an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have diffused away, or been forced away by an electric field. The only elements left ...

  8. Electric dipole moment - Wikipedia

    en.wikipedia.org/wiki/Electric_dipole_moment

    For two opposite charges, denoting the location of the positive charge of the pair as r + and the location of the negative charge as r −: = + = (+) = (+) =, showing that the dipole moment vector is directed from the negative charge to the positive charge because the position vector of a point is directed outward from the origin to that point.

  9. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    For a surface charge distribution (a good approximation for charge on a plate in a parallel plate capacitor) where (′) gives the charge per unit area at position ′, and ′ is an infinitesimal element of area, ′ = (′) ′.