Search results
Results from the WOW.Com Content Network
Pyridine-N-oxide is the heterocyclic compound with the formula C 5 H 5 NO. This colourless, hygroscopic solid is the product of the oxidation of pyridine. It was originally prepared using peroxyacids as the oxidising agent. The compound is used infrequently as an oxidizing reagent in organic synthesis. [1]
With secondary amines and not primary amines the Zincke reaction takes on a different shape forming so-called Zincke aldehydes in which the pyridine ring is ring-opened with the terminal iminium group hydrolyzed to an aldehyde: [4] Zincke aldehydes. This variation has been applied in the synthesis of novel indoles: [11] Zincke aldehydes Kearney ...
Compared to benzene, the rate of electrophilic substitution on pyridine is much slower, due to the higher electronegativity of the nitrogen atom. Additionally, the nitrogen in pyridine easily gets a positive charge either by protonation (from nitration or sulfonation) or Lewis acids (such as AlCl 3) used to catalyze the reaction. This makes the ...
Pyridine and poly(4-vinyl) pyridine have been shown to form conducting molecular wires with remarkable polyenimine structure on UV irradiation, a process which accounts for at least some of the visible light absorption by aged pyridine samples. These wires have been theoretically predicted to be both highly efficient electron donors and ...
Pyridine-N-oxides bind to metals through the oxygen. According to X-ray crystallography, the M-O-N angle is approximately 130° in many of these complexes. As reflected by the pKa of 0.79 for C 5 H 5 NOH +, pyridine N-oxides are weakly basic ligands. Their complexes are generally high spin, hence they are kinetically labile.
Kröhnke condensation of enamino nitrile 20 with enone 21 yielded fused pyridine 22. Figure 5. The mechanism of this Kröhnke-type reaction likely proceeds via a vinylogous cyanamide 23 which undergoes elimination of hydrocyanic acid, deprotonation to form enamine 24 and cyclization to form intermediate 25, which is then dehydrated to form the ...
In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group (−NO 2) into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters ( −ONO 2 ) between alcohols and nitric acid (as occurs in the synthesis of nitroglycerin ).
The inductive and resonance properties compete with each other but the resonance effect dominates for purposes of directing the sites of reactivity. For nitration, for example, fluorine directs strongly to the para position because the ortho position is inductively deactivated (86% para, 13% ortho, 0.6% meta).