Search results
Results from the WOW.Com Content Network
coulomb (C = A⋅s) T I: extensive, conserved Electric charge density: ρ Q: Electric charge per unit volume C/m 3: L −3 T I: intensive Electrical conductance: G: Measure for how easily current flows through a material siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical conductivity: σ: Measure of a material's ability to conduct ...
newton per coulomb (N⋅C −1), or equivalently, volt per meter (V⋅m −1) energy: joule (J) Young's modulus: pascal (Pa) or newton per square meter (N/m 2) eccentricity: unitless Euler's number (2.71828, base of the natural logarithm) unitless electron: unitless elementary charge: coulomb (C) force
For example, Newton's law of universal gravitation, = = (), can be expressed as: = () (). Both equations are dimensionally consistent and equally valid in any system of quantities, but the second equation, with G absent, is relating only dimensionless quantities since any ratio of two like-dimensioned quantities is a dimensionless quantity.
Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws , where force is inversely proportional to the square of the distance between the bodies.
coulomb per cubic metre C/m 3: electric charge density: m −3 ⋅s⋅A coulomb per square metre C/m 2: surface charge density, electric flux density, electric displacement: m −2 ⋅s⋅A farad per metre F/m permittivity: m −3 ⋅kg −1 ⋅s 4 ⋅A 2: henry per metre H/m permeability: m⋅kg⋅s −2 ⋅A −2: joule per mole J/mol molar ...
Coulomb's law for the electric force between two stationary, electrically charged bodies has much the same mathematical form as Newton's law of universal gravitation: the force is proportional to the product of the charges, inversely proportional to the square of the distance between them, and directed along the straight line between them.
The SI system after the 2019 definition: Base units as defined in terms of physical constants and other base units. Here, means is used in the definition of . The SI system after 1983, but before the 2019 redefinition: Base unit definitions in terms of other base units (for example, the metre is defined as the distance travelled by light in a specific fraction of a second), with the constants ...
A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that cannot be explained by a theory and therefore must be measured experimentally.