Search results
Results from the WOW.Com Content Network
The bulk synchronous parallel (BSP) abstract computer is a bridging model for designing parallel algorithms. It is similar to the parallel random access machine (PRAM) model, but unlike PRAM, BSP does not take communication and synchronization for granted. In fact, quantifying the requisite synchronization and communication is an important part ...
Depth of processing falls on a shallow to deep continuum. [citation needed] Shallow processing (e.g., processing based on phonemic and orthographic components) leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing (e.g., semantic processing) results in a more durable memory trace. [1]
As with implicit process interaction, an implicit model of parallelism reveals nothing to the programmer as the compiler, the runtime or the hardware is responsible. For example, in compilers, automatic parallelization is the process of converting sequential code into parallel code, and in computer architecture, superscalar execution is a ...
Specialized computer hardware is often used to execute artificial intelligence (AI) programs faster, and with less energy, such as Lisp machines, neuromorphic engineering, event cameras, and physical neural networks. Since 2017, several consumer grade CPUs and SoCs have on-die NPUs. As of 2023, the market for AI hardware is dominated by GPUs. [1]
Examples of distributed memory (multiple computers) include MPP (massively parallel processors), COW (clusters of workstations) and NUMA (non-uniform memory access). The former is complex and expensive: Many super-computers coupled by broad-band networks. Examples include hypercube and mesh interconnections.
Each instruction processes one data item, but there are multiple execution units within each CPU thus multiple instructions can be processing separate data items concurrently. Superscalar CPU design emphasizes improving the instruction dispatcher accuracy and allowing it to keep the multiple execution units in use at all times.
On the other hand, the main difference from custom hardware, i.e. application-specific integrated circuits (ASICs) is the possibility to adapt the hardware during runtime by "loading" a new circuit on the reconfigurable fabric, thus providing new computational blocks without the need to manufacture and add new chips to the existing system.
A sequential computer which exploits no parallelism in either the instruction or data streams. Single control unit (CU) fetches a single instruction stream (IS) from memory. The CU then generates appropriate control signals to direct a single processing element (PE) to operate on a single data stream (DS) i.e., one operation at a time.