Search results
Results from the WOW.Com Content Network
A Markov decision process is a Markov chain in which state transitions depend on the current state and an action vector that is applied to the system. Typically, a Markov decision process is used to compute a policy of actions that will maximize some utility with respect to expected rewards.
The "Markov" in "Markov decision process" refers to the underlying structure of state transitions that still follow the Markov property. The process is called a "decision process" because it involves making decisions that influence these state transitions, extending the concept of a Markov chain into the realm of decision-making under uncertainty.
The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model. A Markov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items. [1] An example of a model for such a field is the Ising model. A discrete ...
In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.
This category is for articles about the theory of Markov chains and processes, and associated processes. See Category:Markov models for models for specific applications that make use of Markov processes.
A partially observable Markov decision process (POMDP) is a generalization of a Markov decision process (MDP). A POMDP models an agent decision process in which it is assumed that the system dynamics are determined by an MDP, but the agent cannot directly observe the underlying state. Instead, it must maintain a sensor model (the probability ...
The model appears in Ronald A. Howard's book. [3] The models are often studied in the context of Markov decision processes where a decision strategy can impact the rewards received. The Markov Reward Model Checker tool can be used to numerically compute transient and stationary properties of Markov reward models.
The probabilistic automaton may be defined as an extension of a nondeterministic finite automaton (,,,,), together with two probabilities: the probability of a particular state transition taking place, and with the initial state replaced by a stochastic vector giving the probability of the automaton being in a given initial state.