Search results
Results from the WOW.Com Content Network
In some compiled languages, in fact, the index ranges may have to be known at compile time. On the other hand, some programming languages provide more liberal array types, that allow indexing by arbitrary values, such as floating-point numbers, strings, objects, references, etc.. Such index values cannot be restricted to an interval, much less ...
In computer science, a literal is a textual representation (notation) of a value as it is written in source code. [1] [2] Almost all programming languages have notations for atomic values such as integers, floating-point numbers, and strings, and usually for Booleans and characters; some also have notations for elements of enumerated types and compound values such as arrays, records, and objects.
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both). Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly. In object-oriented languages ...
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
Because floating-point numbers have limited precision, only a subset of real or rational numbers are exactly representable; other numbers can be represented only approximately. Many languages have both a single precision (often called float) and a double precision type (often called double).
Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).
A floating-point number is a rational number, because it can be represented as one integer divided by another; for example 1.45 × 10 3 is (145/100)×1000 or 145,000 /100. The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be ...