Search results
Results from the WOW.Com Content Network
Invertible matrix. In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. Invertible matrices are the same size as their inverse.
Formula computing the inverse of the sum of a matrix and the outer product of two vectors. In linear algebra, the Sherman–Morrison formula, named after Jack Sherman and Winifred J. Morrison, computes the inverse of a " rank -1 update" to a matrix whose inverse has previously been computed. [1][2][3] That is, given an invertible matrix and the ...
Woodbury matrix identity. In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1][2] – says that the inverse of a rank- k correction of some matrix can be computed by doing a rank- k correction to the inverse of the original matrix. Alternative names for this formula are the matrix ...
An N-point DFT is expressed as the multiplication =, where is the original input signal, is the N-by-N square DFT matrix, and is the DFT of the signal. The transformation matrix W {\displaystyle W} can be defined as W = ( ω j k N ) j , k = 0 , … , N − 1 {\displaystyle W=\left({\frac {\omega ^{jk}}{\sqrt {N}}}\right)_{j,k=0,\ldots ,N-1 ...
Generalized inverse. Algebraic element satisfying some of the criteria of an inverse. In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element x is an element y that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inverse of a matrix is ...
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of ...
Complex matrix whose conjugate transpose equals its inverse. In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U−1 equals its conjugate transpose U*, that is, if. where I is the identity matrix. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint ...
A rational normal form generalizing the Jordan normal form. The Frobenius normal form does not reflect any form of factorization of the characteristic polynomial, even if it does exist over the ground field F. This implies that it is invariant when F is replaced by a different field (as long as it contains the entries of the original matrix A).