Search results
Results from the WOW.Com Content Network
[4] Einthoven developed a sensitive form of string galvanomter that allowed photographic recording of the impulses associated with the heartbeat. He was a leader in applying the string galvanometer to physiology and medicine, leading to today's electrocardiography. [5] Einthoven was awarded the 1924 Nobel prize in Physiology or Medicine for his ...
Willem Einthoven (21 May 1860 – 29 September 1927) was a Dutch medical doctor and physiologist. He invented the first practical electrocardiograph (ECG or EKG) in 1895 and received the Nobel Prize in Physiology or Medicine in 1924 for it ("for the discovery of the mechanism of the electrocardiogram").
Williams traveled to Holland to study the methods of Willem Einthoven in 1911. [ 2 ] He constructed the first string galvanometer in America, pioneered vectorcardiography , discovered the ventricular vulnerable period, and first determined the 60-Hz current required to produce ventricular fibrillation with body-surface electrodes.
The electrocardiograph was impractical to use until Willem Einthoven, a Dutch physiologist, innovated the use of the string galvanometer for cardiac signal amplification. [2] Significant improvements in amplifier technologies led to the usage of smaller electrodes that were more easily attached to body parts. [ 1 ]
Dutch physiologist Willem Einthoven developed the string galvanometer in the early 20th century, publishing the first registration of its use to record an electrocardiogram in a Festschrift book in 1902. The first human electrocardiogram was recorded in 1887, however only in 1901 was a quantifiable result obtained from the string galvanometer.
Graphical representation of Einthoven's triangle. Einthoven's triangle is an imaginary formation of three limb leads in a triangle used in the electrocardiography, formed by the two shoulders and the pubis. [1] The shape forms an inverted equilateral triangle with the heart at the center. It is named after Willem Einthoven, who theorized its ...
In Wedensky's laboratory, and at the same time as Charles S. Sherrington (1857–1952), Beritashvili used the string galvanometer to study the central coordination of spinal reflexes in the registration of action currents of antagonist muscles. In 1913–1914 he discovered the rhythmic nature of reciprocal inhibition.
Heron (c. 10–70), Roman Egypt – usually credited with invention of the aeolipile, although it may have been described a century earlier; John Herschel (1792–1871), UK – photographic fixer (hypo), actinometer; Harry Houdini (1874–1926) U.S. – flight time illusion; Heinrich Hertz (1857–1894), Germany – radio telegraphy ...