Search results
Results from the WOW.Com Content Network
Three-phase transformer with four-wire output for 208Y/120 volt service: one wire for neutral, others for A, B and C phases. Three-phase electric power (abbreviated 3ϕ [1]) is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. [2]
The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system. In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period ...
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.
The unit for power is the watt (symbol: W). Apparent power is often expressed in volt-amperes (VA) ... that is, the magnitude of total three-phase complex power.
One voltage cycle of a three-phase system. A polyphase system (the term coined by Silvanus Thompson) is a means of distributing alternating-current (AC) electrical power that utilizes more than one AC phase, which refers to the phase offset value (in degrees) between AC in multiple conducting wires; phases may also refer to the corresponding terminals and conductors, as in color codes.
Commonly the system neutral is connected to the star point on the feeding transformer. This is the reason that the secondary side of most three-phase distribution transformers is wye- or star-wound. Three-phase transformers and their associated neutrals are usually found in industrial distribution environments.
The phase windings of a polyphase transformer can be connected internally in different configurations, depending on what characteristics are needed from the transformer. In a three-phase power system, it may be necessary to connect a three-wire system to a four-wire system, or vice versa.
Symmetrical components are most commonly used for analysis of three-phase electrical power systems. The voltage or current of a three-phase system at some point can be indicated by three phasors, called the three components of the voltage or the current. This article discusses voltage; however, the same considerations also apply to current.