enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. High harmonic generation - Wikipedia

    en.wikipedia.org/wiki/High_Harmonic_Generation

    High harmonic generation strongly depends on the driving laser field and as a result the harmonics have similar temporal and spatial coherence properties. [10] High harmonics are often generated with pulse durations shorter than that of the driving laser. [11] This is due to the nonlinearity of the generation process, phase matching and ...

  3. Attosecond physics - Wikipedia

    en.wikipedia.org/wiki/Attosecond_physics

    High harmonic generation in krypton.This technology is one of the most used techniques to generate attosecond bursts of light. Attosecond physics, also known as attophysics, or more generally attosecond science, is a branch of physics that deals with light-matter interaction phenomena wherein attosecond (10 −18 s) photon pulses are used to unravel dynamical processes in matter with ...

  4. Table of spherical harmonics - Wikipedia

    en.wikipedia.org/wiki/Table_of_spherical_harmonics

    The saturation of the color at any point represents the magnitude of the spherical harmonic and the hue represents the phase. The nodal 'line of latitude' are visible as horizontal white lines. The nodal 'line of longitude' are visible as vertical white lines. Visual Array of Complex Spherical Harmonics Represented as 2D Theta/Phi Maps

  5. Molecular Hamiltonian - Wikipedia

    en.wikipedia.org/wiki/Molecular_Hamiltonian

    The corresponding Schrödinger equation is easily solved, it factorizes into 3N − 6 equations for one-dimensional harmonic oscillators. The main effort in this approximate solution of the nuclear motion Schrödinger equation is the computation of the Hessian F of V and its diagonalization.

  6. Harmonic generation - Wikipedia

    en.wikipedia.org/wiki/Harmonic_generation

    N-th harmonic generation. Harmonic generation (HG, also called multiple harmonic generation) is a nonlinear optical process in which photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with times the energy of the initial photons (equivalently, times the frequency and the wavelength divided by ).

  7. Ultrafast laser spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Ultrafast_laser_spectroscopy

    High harmonic generation in atoms is well understood in terms of the three-step model (ionization, propagation, and recombination). Ionization: The intense laser field modifies the Coulomb potential of the atom, electron tunnels through the barrier and ionize. Propagation: The free-electron accelerates in the laser field and gains momentum.

  8. Orbitrap - Wikipedia

    en.wikipedia.org/wiki/Orbitrap

    Like in FTICR-MS the Orbitrap resolving power is proportional to the number of harmonic oscillations of the ions; as a result, the resolving power is inversely proportional to the square root of m/z and proportional to acquisition time. For example, the values above would double for m/z 100 and halve for m/z 1600. For the shortest transient of ...

  9. Overtone band - Wikipedia

    en.wikipedia.org/wiki/Overtone_band

    In vibrational spectroscopy, an overtone band is the spectral band that occurs in a vibrational spectrum of a molecule when the molecule makes a transition from the ground state (v=0) to the second excited state (v=2), where v is the vibrational quantum number (a non-negative integer) obtained from solving the Schrödinger equation for the molecule.