enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curve orientation - Wikipedia

    en.wikipedia.org/wiki/Curve_orientation

    This definition relies on the fact that every simple closed curve admits a well-defined interior, which follows from the Jordan curve theorem. The inner loop of a beltway road in a country where people drive on the right side of the road is an example of a negatively oriented ( clockwise ) curve.

  3. Orientation (vector space) - Wikipedia

    en.wikipedia.org/wiki/Orientation_(vector_space)

    The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space , right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also ...

  4. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    Lemma 1 (Decomposition Lemma) — Assume is a rectifiable, positively oriented Jordan curve in the plane and let be its inner region. For every positive real δ {\displaystyle \delta } , let F ( δ ) {\displaystyle {\mathcal {F}}(\delta )} denote the collection of squares in the plane bounded by the lines x = m δ , y = m δ {\displaystyle x=m ...

  5. Exterior algebra - Wikipedia

    en.wikipedia.org/wiki/Exterior_algebra

    The fact that this may be positive or negative has the intuitive meaning that v and w may be oriented in a counterclockwise or clockwise sense as the vertices of the parallelogram they define. Such an area is called the signed area of the parallelogram: the absolute value of the signed area is the ordinary area, and the sign determines its ...

  6. Darboux frame - Wikipedia

    en.wikipedia.org/wiki/Darboux_frame

    A trihedron is said to be adapted to a surface if P always lies on the surface and e 3 is the oriented unit normal to the surface at P. In the case of the Darboux frame along an embedded curve, the quadruple (P(s) = γ(s), e 1 (s) = T(s), e 2 (s) = t(s), e 3 (s) = u(s)) defines a tetrahedron adapted to the surface into which the curve is embedded.

  7. Orientability - Wikipedia

    en.wikipedia.org/wiki/Orientability

    A torus is an orientable surface The Möbius strip is a non-orientable surface. Note how the disk flips with every loop. The Roman surface is non-orientable.. In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". [1]

  8. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.

  9. Orientation (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Orientation_(graph_theory)

    A directed graph is called an oriented graph if none of its pairs of vertices is linked by two mutually symmetric edges. Among directed graphs, the oriented graphs are the ones that have no 2-cycles (that is at most one of (x, y) and (y, x) may be arrows of the graph). [1] A tournament is an orientation of a complete graph.